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Abstract

Six quantitative structure–property relationship (QSPR) models for a diverse set of experimental data of Henry’s law constant (H) of
organic chemicals under environmental condition (T = 25 �C; water–air system) have been developed based on four different molecular
descriptor sets. Three different models based on the descriptors of CODESSA (Comprehensive Descriptors for Structural and Statistical
Analysis), Tsar, and Dragon software and a model based on a combined descriptor set from these packages, and in addition from
HYBOT software, have been established using the stepwise regression method. The combined descriptors set model gave the best results.
Furthermore, a genetic algorithm was used for descriptor selection from a combined set of descriptors, and a radial basis function net-
work was utilized to establish a model with a low root mean square error (RMSE). The results of this study were compared with the well-
known bond contribution and group contribution methods. The group contribution method failed to predict Henry’s law constant of 170
from all 940 compounds in the data-set. RMSEs of 0.693, 0.798, and 0.564 were achieved for bond contribution, group contribution and
the best QSPR model of this study, respectively, based on logarithm of H. Analysis of different QSPR models showed that hydrogen
bonding between the organic solute and water as a solvent has the greatest influence on this partitioning phenomenon.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

As the air–water partition coefficient, Henry’s law con-
stant (H) represents a key physical property of a compound
with respect to its distribution and fate in the environment
as well as to the applicability of potential treatment meth-
ods such as air-stripping for treatment of contaminated
ground water (Staudinger and Roberts, 1996; Baker
et al., 2002). However, according to the latest literature,
directly measured H data are known for a relatively small
number of organic chemicals (fewer than 1200 compounds)
out of the over 70,000 that are in current use (Brennan
0045-6535/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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et al., 1998). Therefore, the need for additional experimen-
tal data on the one hand and for validated estimation
methods for this property on the other hand is crucial.
The estimation methods for H for environmental purposes
can be categorized as (1) property–property relationships
(PPR) methods; (2) bond and group contribution methods;
(3) continuum-solvation methods; (4) UNIFAC (universal
quasi-chemical functional group activity coefficient) and
structural, quantum chemical or physicochemical descrip-
tor-based quantitative structure–property relationships
(QSPR) methods.

The most well known PPR is the VP/AS (vapor pressure/
aqueous solubility) method (Mackay et al., 2000). Although
for compounds with low solubility and low vapor pressure
measured at a desired temperature, the VP/AS method, also
called indirectly measured H (Mackay and Shiu, 1981), has
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excellent results, the above-mentioned ratio from calculated
values of vapor pressure and aqueous solubility can lead to
large errors (Cramer, 1980). The first bond contribution
method (Hine and Mookerjee, 1975) has been improved
by expanding the number of bond definitions from 34 to
59 and with 15 correction factors (Meylan and Howard,
1991) and finally, in recent revisions, the bond method con-
tains 64 bond definitions and 57 correction factors, whilst
the group contribution method contains 93 group defini-
tions (Meylan and Howard, 2000). Continuum-solvation
models (SMx) are based on a thermodynamically linear
relationship of the logarithm of H and the solvation free
energy (DGs). A comprehensive review of performances of
SMx models (Dearden and Schüürmann, 2003) using a
data-set including 700 experimental H points has revealed
that despite the high computational cost of these methods,
large errors even up to 30 orders of magnitude arise for H.
UNIFAC is a semi-empirical, thermodynamics based
QSPR–PPR model used to calculate activity coefficient.
For environmental applications, UNIFAC has been used
directly to calculate infinite dilution activity coefficient
(c1) for aqueous solution (Shimotori and Arnold, 2002)
or indirectly by extrapolation of vapor-liquid equilibrium
data obtained at higher solute concentrations (Örnektekin
et al., 1996). The value of c1 is then used with vapor pres-
sure and total pressure ratio value (Psat/PT) to calculate H.
Although the UNIFAC approach is able to consider tem-
perature effects, it requires interaction parameters that are
obtained from model fit to experimental phase-equilibrium
data, which are often lacking for chemicals of environmen-
tal interest.

Alternatively, QSPRs based solely on calculated molec-
ular descriptors, which represent the quantitative features
of a molecule, provide a promising method for the accurate
estimation of H. Such QSPR studies have provided satis-
factory models for the prediction of Henry’s law constants
of rather small data-sets and specific chemical classes
(Dearden and Schüürmann, 2003); however, developing a
comprehensive QSPR for a wide range of chemicals still
remains a challenge for researchers. Previous QSPR models
(e.g. Abraham et al., 1994; Katritzky et al., 1996; Dearden
et al., 1997, 2000; English and Carroll, 2001; Yao et al.,
2002; Yaffe et al., 2003) have been developed based on dif-
ferent numbers of data-set points up to 495 compounds
(Yaffe et al., 2003) and have different performances.

The performance of the models is usually evaluated by
means of standard error (SE or s) or root mean square
error (RMSE) for training and test data-sets and seldom
by means of absolute average error (AAE); however this
should not be overinterpreted by, for example, comparison
of the RMSE or AAE of different models with different
number of compounds in each data-set. Strictly speaking,
the performances of models should be compared only when
the same data-set is used.

The objectives of the present study are to analyse and
compare the performances of different molecular descriptor
sets, to evaluate the application of a genetic algorithm
(GA) for descriptor selection and radial basis function net-
work (RBFN) for QSPR model development, to establish a
satisfactory QSPR model for H of organic compounds of
environmental interest, and to achieve some insight into
the main molecular features of such compounds that influ-
ence the partitioning phenomenon between air and water.

2. Materials and methods

2.1. Data-set

The data-set used in this study comprises a diverse set of
940 organic compounds including a large set of nitro com-
pounds, which have been used only rarely in previous stud-
ies. The data were collected from different sources (Meylan
and Howard, 2000; Lin and Sandler, 2002), and were com-
piled in the units of atm m3 mol�1, and presented as the
logarithm of H at 25 �C, the values of which range from
�11.475 to 1.307. The data-set is a mix of directly and indi-
rectly measured H, in which indirectly measured data were
selected meticulously according to reliability of solubility
and vapor pressure data.

The data-set was randomly divided into a training set of
770 compounds and a test set of 170 compounds for linear
regression analysis, and three subsets of 770, 110, and 60
compounds as the training, cross validation, and test
data-sets for RBFN analysis, in such a way that test sets
included compounds representative of all chemical groups.

2.2. Molecular optimization and descriptor generation

The SMILES (Simplified Molecular Input Line Entry
System) strings of all compounds were entered into the
Tsar 3.3 (� 2000 Oxford Molecular Limited, and now
available from Accelrys Inc.) software to generate the 3D
structures of molecules. Then the mol files of compounds
were exported from Tsar to AMPAC (Austin Method
PACkage) software (Semichem, Inc.), where the molecular
structures were optimized using the PM3 (Parameterized
Model number 3) Hamiltonian in vacuo using the Polak-
Ribiere algorithm until the root mean square gradient
was 0.01. All calculations were carried out at restricted
Hartree-Fock level with no configuration interaction. The
optimized geometries were transferred into CODESSA (�
2002 Hypercube, Inc.), Dragon (Web version, � 2003
Talete srl), HYBOT (� 2000 Dr. Sergei V. Trepalin), and
Tsar packages to calculate 313, 1352, 14 and 113 molecular
descriptors respectively, for each compound.

2.3. Genetic algorithm for descriptor subset selection

Genetic algorithm is inspired by Darwin’s theory of evo-
lution. The algorithm begins with a set of chromosomes
called a population. Here, bit mask vectors, in which the
dimension of vectors is equal to the number of all descrip-
tors, serve as chromosomes. Vector element is one if the
corresponding descriptor is included in the model and is
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zero otherwise. Vectors from one population are taken and
used to form a new population. This is motivated by a hope
that the new population will yield a better model than the
old one. Subsets, which are then selected to form new
vectors (offspring), are selected according to their perfor-
mance in cross-validation; the more suitable they are, the
more chances they have to reproduce and survive. There
are two basic parameters of GA: cross-over probability
and mutation probability. Cross-over operates on selected
genes (binary components of chromosomes) from parent
chromosomes and creates new offspring. The simplest
way to do this is to choose randomly some cross-over
point, copy everything before this point from the first par-
ent, and then copy everything after the cross-over point
from the other parent. Following the cross-over phase,
mutation is applied with a very low probability (e.g. 1%)
to all genes in the population. In the mutation phase, each
bit may be inverted from 0 to 1 and vice versa. The above
steps of the algorithm are called an evolution, and the algo-
rithm usually is stopped after a predefined number of evo-
lutions. In this study, a MATLAB code (Orr, 1996a) was
used for the descriptor selection process with GA based
on partial least squares (PLS) regression.
2.4. Radial basis function neural network

A RBFN has a similar form to the multi-layer percep-
trons neural network, but with just one hidden layer. Thus
it can be described as a three-layer feed-forward structure.
As presented schematically in Fig. 1, the input layer does
not process the information; it only distributes the p ele-
ments (ek) of n input vectors (xi) from the matrix data-set
of X to the hidden layer. The hidden layer contains u radial
basis function units, usually a statistical transformation
based on a Gaussian distribution. Therefore, each of the
units should have center (cj) and width (rj). As a simplifica-
tion in the calculation process, the width of the units can be
of identical value (r), which is the case in this study. A RBF
is a nonlinear transfer function and operates by measuring
the Euclidean distance between input vector and radial
basis function center. The output of each unit (zij) is a sca-
lar element of n · (u + 1) matrix, known as a design matrix
in the training process, Z, as follows:
Fig. 1. Schematic representation of RBFN.
zij ¼ exp
�kxi � cjk2

r2

 !
ð1Þ

The elements of the last column of design matrix are unity
for inclusion of bias (b). When the design matrix is found
based on training input vectors, selected centers and width,
the optimal parameters of the network (weights and b) can
be calculated by a least squares training method, which
leads to the following equation:

W ¼ ðZTZÞ�1ZTY ð2Þ
where ZT is the transposition of matrix Z, W is the network
parameter (u + 1) · 1 vector, including u weights (wij) and a
b as a final element. The optimum vector of the parameters
can be used for generating the output of any appropriate
input, whether training or external test data-set. This is
accomplished by the output layer. The operation of the
output layer is linear and is achieved with the following
matrix internal multiplication:

Y ¼ ZW ð3Þ
where the elements of vector Y are the corresponding out-
puts (yi) of xi. Therefore, designing a RBFN involves
selecting centers, width, weights, and number of hidden
units. A forward subset selection routine (Orr, 1996a,b)
was used to select the centers from the training data-set.
The width of units can be selected by the analysing the per-
formance of RBFN (RMSE) regarding the number of hid-
den units.

3. Results

In the search for the best descriptor subset by stepwise
regression from a large set of the descriptors, a major prob-
lem is connected with the mutual collinearity of descrip-
tors, which leads to instability of the regression
coefficients, overestimated standard errors, and a critical
loss of predictive information. In addition, descriptors with
low correlation coefficient (CO) with the modeled property
(logH) in a QSPR model do not exactly describe the behav-
ior of the property and almost cover the prediction offset
(or errors) of the models, which for external prediction
may lead to large errors. Therefore, MATLAB codes were
developed for excluding those descriptors that had less
than 5% correlation with the logH data and those descrip-
tors that had more than 70% pair-wise collinearity. Of the
inter-correlated descriptors, that one was excluded that had
the lower correlation with logH. A combined set of
descriptors from the four packages was set up and the
above refining procedure was applied. After the refining
phase, the total number of descriptors was 250, 315, 57
and 150 for CODESSA, Dragon, Tsar, and combined
(including HYBOT) descriptor sets, respectively. Then for-
ward–backward stepwise regression was used to select the
10 best descriptors of each descriptor set according to sta-
tistical t and p tests and to develop four QSPR models
(CSW/MLR, DSW/MLR, TSW/MLR, HSW/MLR stand-



Table 2
List of descriptors, coefficients, t-values, standard errors (SE), and
correlation coefficients (CO) with logH of DSW/MLR model

No. Descriptor symbol Coefficient t-value SE CO

Intercept �0.896 �8.7 0.104
1 H-050 �1.081 �16.1 0.067 �0.563
2 O-058 �0.927 �10.0 0.093 �0.331
3 Mor15p �1.759 �14.5 0.121 �0.350
4 R1e+ �3.826 �10.1 0.379 �0.463
5 nN �0.817 �13.4 0.061 �0.416
6 RDF020e �0.298 �13.2 0.023 �0.288
7 MAXDP �0.578 �14.9 0.039 �0.522
8 nCOOH �1.694 �9.3 0.182 �0.279
9 H-046 0.130 17.5 0.007 0.330

10 SEigp �0.272 �14.0 0.019 0.254

Name of descriptors (category): 1 – H attached to heteroatom (atom-
centered fragments); 2 – O = (atom-centered fragments); 3 – 3D MoRSE-
signal 15/weighted by atomic polarizabilities (MoRSE); 4 – R maximal
autocorrelation of lag1/weighted by atomic Sanderson electronegativities
(GETAWAY); 5 – number of N atoms (constitutional); 6 – radial distri-
bution function � 2.0/weighted by atomic Sanderson electronegativities
(RDF); 7 – maximal electrotopological positive variation (topological); 8 –
number of aliphatic carboxylic acids (constitutional); 9 – H attached to
CO(sp3) no X attached to next C (atom-centered fragments); 10 – eigen-
value sum from polarizability weighted distance matrix (eigenvalue-based
indices).

Table 3
List of descriptors, coefficients, t-values, standard errors (SE), and
correlation coefficients (CO) with logH of TSW/MLR model

No. Descriptor symbol Coefficient t-value SE CO

Intercept �1.679 �16.3 0.103
1 nHD �1.910 �25.4 0.075 �0.600
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ing for models based on stepwise selection method of
descriptors from CODESSA, Dragon, Tsar, and combined
set of all above descriptors including HYBOT descriptors
and established by multi-linear regression (MLR)).

The list of descriptors along with their coefficients, sta-
tistical values of the coefficients, and correlation coeffi-
cients with logH are presented for four models in Tables
1–4. The statistical results of the four models show that
the HSW/MLR model has the best quality. Therefore,
the selection routine of GA (Leardi et al., 1992; Leardi,
1994; Leardi and Gonzalez, 1998) was applied on the com-
bined descriptor-set to select the 10 best descriptors from
MLR. The population, cross-over probability, and muta-
tion probability of GA were set to 30 chromosomes,
50%, and 1%, respectively. There was not much difference
in results by increasing the number of chromosomes; how-
ever, it slowed down the evolutionary process. The perfor-
mance of PLS over a leave-group-out cross-validation
procedure (with three elements out in each epoch of
cross-validation phase) was used as a fitness measure of
GA, followed by the breeding (cross-over and mutation)
process. After 5000 evolutions the percentage of survival
chance of descriptors in all generations was used to select
the 10 best descriptors. Table 5 presents the selected
descriptors, their sources and survival chances in the GA,
their coefficients, statistical values of the coefficients in
the MLR, and correlation coefficients with logH.

The results and performance of five linear QSPR models
are presented in Table 6, which shows that the MLR model
based on selected descriptors from combined descriptor set
Table 1
List of descriptors, coefficients, t-values, standard errors (SE), and
correlation coefficients (CO) with logH of CSW/MLR model

No. Descriptor symbol Coefficient t-value SE CO

Intercept �1.132 �11.3 0.100
1 nF 0.717 14.4 0.050 0.146
2 nO �0.426 �9.1 0.047 �0.492
3 nN �0.776 �12.0 0.065 �0.410
4 nR �0.513 �11.5 0.045 �0.248
5 DPSA-1 0.003 9.6 0.000 0.128
6 PPSA-3 0.016 4.1 0.004 �0.266
7 HA_HDSA-2 �0.277 �19.4 0.014 �0.645
8 Qmin 13.096 16.0 0.819 0.564
9 HDCA �0.198 �9.4 0.021 �0.475
10 WNSA-1 �0.015 �13.4 0.001 �0.191

Name of descriptors (category): 1 – Number of fluorine atoms (constitu-
tional); 2 – number of oxygen atoms (constitutional); 3 – number of
nitrogen atoms (constitutional); 4 – number of rings (constitutional); 5 –
difference in charged partial surface areas [partial positively charged sur-
face area–partial negatively charged surface area], based on quantum
chemical partial charge (electrostatic); 6 – atomic charge-weighted partial
positively surface area, based on Zefirov’s partial charge (electrostatic); 7 –
hydrogen-acceptors dependent area-weighted surface charge of hydrogen-
bonding donor atoms, based on quantum chemical partial charge (elec-
trostatic); 8 – minimum most negative partial charge (electrostatic); 9 –
hydrogen-donors charged surface area, based on quantum chemical par-
tial charge (electrostatic); 10 – weighted partial negatively charged surface
area [partial negatively charged surface area · total molecular surface
area/1000], based on Zefirov’s partial charge (electrostatic).

2 l �0.312 �8.9 0.035 �0.416
3 nNO2

2.804 19.1 0.147 �0.140
4 logP 0.374 11.4 0.033 0.153
5 nF 1.772 29.1 0.061 0.146
6 nN �0.582 �9.0 0.065 �0.410
7 nh �0.144 �5.6 0.026 0.060
8 nCH3

0.340 10.6 0.032 0.200
9

P
Estate �0.167 �29.0 0.006 �0.418

10 2j 0.159 8.1 0.020 �0.116

Name of descriptors (category): 1 – Number of hydrogen-bond donor
(constitutional); 2 – total dipole moment (electrostatic); 3 – group count
for nitro (constitutional); 4 – logarithm of octanol–water partition coef-
ficient (physicochemical); 5 – number of fluorine atoms (constitutional); 6
– number of nitrogen atoms (constitutional); 7 – number of halogen atoms
(constitutional); 8 – group count for methyl (constitutional); 9 – sum of
electrotopological state indices for whole molecule (topological); 10 – Kier
shape index 2 (topological).
by means of GA (GA/MLR model) has good statistical
results and prediction ability. Therefore, the radial basis
function networks were used to develop a nonlinear model
based on the same subset of descriptors which was used for
the GA/MLR model, to achieve a more accurate and more
generalized QSPR model. As mentioned before, the design-
ing of a RBFN involves selection of centers, number of
nodes in the hidden layers, optimum width, and weights.
Thirty centers were found by forward subset selection rou-
tine from the training data-set. The advantages of this
method are that it can determine the number of hidden



Table 4
List of descriptors, coefficients, t-values, standard errors (SE), and correlation coefficients (CO) with logH of HSW/MLR model

No. Descriptor symbol Coefficient t-value SE CO Source

Intercept �1.183 �9.8 0.121
1

P
CadðoÞ �0.763 �29.2 0.026 �0.816 HYBOT

2 nNO2
2.487 20.1 0.124 �0.140 DTa

3 GATS1e 0.946 12.8 0.074 0.315 Dragon
4 HA_HDSA-2 �1.365 �6.5 0.209 �0.638 CODESSA
5 nF 0.425 12.7 0.033 0.146 CDTb

6 PNSA-1 �0.005 �16.2 0.000 �0.151 CODESSA
7 Max(Ca(o)) �0.657 �11.4 0.057 �0.578 HYBOT
8 RPCG �1.511 �8.5 0.178 �0.111 CODESSA
9 nR6 �0.445 �12.5 0.035 �0.238 DT

10 nOH �0.510 �7.3 0.070 �0.494 DT

Name of descriptors (category): 1 – Sum of absolute Ca and Cd values [hydrogen-bond free energy acceptor and donor factors, respectively] for all H-bond
donor and acceptor atoms in molecule based on octanol–water partition coefficient (thermodynamic); 2 – nitro group count (constitutional); 3 – Geary
autocorrelation–lag1/weighted by atomic Sanderson electronegativities (2D autocorrelations); 4 – hydrogen-acceptors dependent area-weighted surface
charge of hydrogen bonding donor atoms based on quantum chemical partial charge; 5 – number of fluorine atoms (constitutional); 6 – partial negatively
charged surface area based on Zefirov’s partial charge (electrostatic); 7 – largest Ca factor value in molecule (thermodynamic); 8 – relative positive charge
based on quantum chemical partial charge (electrostatic); 9 – number of six-membered rings (constitutional); 10 – group count for hydroxyl (constitutional).

a Dragon or Tsar.
b CODESSA, Dragon, or Tsar.

Table 5
List of descriptors, their percentage of survival chance (%) in the GA (SC), coefficients, t-values, standard errors (SE), sources, and correlation coefficients
(CO) with logH of GA/MLR model

No. Descriptor symbol SC Coefficient t-value SE CO Source

Intercept �2.057 17.2 0.119
1

P
CadðoÞ 54.4 �0.673 �25.7 0.026 �0.816 HYBOT

2 nNO2
24.8 1.919 18.0 0.106 �0.140 DTa

3 Max(Ca(o)) 23.8 �0.549 �9.6 0.057 �0.578 HYBOT
4 MLOGP 19.4 0.301 10.6 0.028 0.249 Dragon
5 HA_HDCA-1 17.4 �0.181 �11.9 0.015 �0.609 CODESSA
6 GATS1e 16.0 0.861 11.7 0.073 0.315 Dragon
7 PNSA-1 14.8 �0.006 �15.6 0.000 �0.151 CODESSA
8 nF 13.4 0.404 12.7 0.032 0.146 CDTb

9 nR6 10.8 �0.414 �10.4 0.040 �0.238 DT
10 3vv

c 10.2 �0.132 �5.2 0.025 �0.273 DT

Name of descriptors (category): 1 – Sum of absolute Ca and Cd values [hydrogen-bond free energy acceptor and donor factors, respectively] for all H-bond
donor and acceptor atoms in molecule based on octanol–water partition coefficient (thermodynamic); 2 – nitro group count (constitutional); 3 – largest Ca

factor value in molecule (thermodynamic); 4 – Moriguchi octanol–water partition coefficient (physicochemical); 5 – hydrogen-acceptors dependent
hydrogen bonding donor ability of the molecule, based on quantum chemical partial charge (electrostatic); 6 – Geary autocorrelation–lag1/weighted by
atomic Sanderson electronegativities (2D autocorrelations); 7 – partial negatively charged surface area based on Zefirov’s partial charge (electrostatic); 8 –
number of fluorine atoms (constitutional); 9 – number of six-membered rings (constitutional); 10 – valence 3rd order cluster chi index (topological).

a Dragon or Tsar.
b CODESSA, Dragon, or Tsar.

H. Modarresi et al. / Chemosphere 66 (2007) 2067–2076 2071
layer units simultaneously and there is no need to fix the
number of hidden layer units in advance. By adding the
units of hidden layer one by one and evaluating the perfor-
mance of the models with different widths, the optimum
number of units in the hidden layer can be found.

The performance of a RBFN model was measured by
RMSE of the model over 110 cross-validation data. Table
7 presents the minimum RMSE of the cross-validation and
the corresponding number of units in the hidden layer with
variation of the width. This table clearly shows that the
optimum number of the units is 12 and the optimum width
should be between 6 and 8. The exact value of width could
be found by fixing the number of units and calculating the
RMSE of the cross-validation with width variation. An
optimum of 6.8 for the width was found by these calcula-
tions. After determination of the centers and width, the
weights and bias of the RBFN can be calculated easily
by setting up the design matrix from Eq. (1) and putting
it in Eq. (2). The last element of vector W is the bias and
is equal to 0.783. The 12 selected centers and corresponding
weights are presented in Table 8.

Therefore to calculate logH for a compound or set of
compounds, one should set up a Z vector or matrix accord-
ing to Eq. (1) and enter the unit elements as bias coefficients
and apply them to Eq. (3). The statistical results and per-
formance of the GA/RBFN model are also presented in
Table 6. In addition, the scatter diagrams of training and
test data-set for all six models are presented in Fig. 2.



Table 6
Statistical results and performances of all models

Model r2% RMSE Fisher
valueTraining CVa testb Training CV Test Totalc

CSW/MLR 85.4 84.2 79.8 0.811 0.842 0.829 0.814 371
DSW/MLR 83.0 82.4 78.1 0.873 0.873 0.856 0.870 372
TSW/MLR 83.1 82.1 80.0 0.872 0.894 0.800 0.859 443
HSW/MLR 92.5 92.1 87.5 0.582 0.598 0.645 0.594 931
GA/MLR 92.8 92.5 90.0 0.570 0.582 0.574 0.571 972
GA/RBFN 92.9 88.7 98.4 0.564 0.592 0.520 0.564
Group contribution 0.798d

Bond contribution 0.697

a Cross-validation (external test) over 110 data for GA/RBFN model and leave-one-out (internal test) for linear models over 770 data.
b External test over 60 and 170 data for RBFN and MLR models, respectively.
c Total RMSE of 940 training and external test data.
d For 770 data (failed for 170 data).

Table 7
Effect of width variation on the minimum RMSE of 110 cross-validation
(CV) data

Width Minimum RMSE of CV Number of hidden units

1 0.8003 29
2 0.6067 12
3 0.5974 12
4 0.5945 12
5 0.5930 12
6 0.5925 12
7 0.5924 12
8 0.5925 12
9 0.5927 12

10 0.5929 12
15 0.5935 12
20 0.5938 12

Table 8
List of centers selected for RBFN and corresponding weights

No. Compound Weight

747 Tetrafluoromethane 1.286
763 Trifluoroacetic acid �15.692
552 Hydrocyanic acid 13.999
653 N-Nitrosomorpholine �7.915
290 2-Pentanone �26.422
646 Nitromethane 7.033
435 Chlorfluzuron �2.468
339 3-Pentanone 4.752

3 1,1,1,3,3,3-Hexafluoropropan-2-ol 9.697
768 Tripropylamine 15.353
218 2,4-Dinitrophenol �3.103
765 Trifluralin 2.935

2072 H. Modarresi et al. / Chemosphere 66 (2007) 2067–2076
The performance of GA/RBFN model as the best QSPR
model of this study was compared with improved group
and bond contribution methods (Table 6), which are the
popular methods in calculation of H of compounds and
have satisfactory precision (Dearden and Schüürmann,
2003). HENRYWIN software (Meylan and Howard,
2000) was used to calculate the H of all compounds in
the training and test data-sets. The group contribution
method failed for calculating of H for 170 of the 940 com-
pounds in the data-set. This is one of the most important
restrictions of the group contribution method since it does
not involve all functional groups and fails if a compound
contains a functional group that is not in the original train-
ing set of the method. More drawbacks about group contri-
bution method can be found in the literature (e.g. Lin and
Sandler, 2002). The RMSE of the group contribution
method for 770 compounds was 0.798. The bond contribu-
tion method was applied to all 940 compounds and yielded
an RMSE of 0.693 in comparison with 0.564 for the GA/
RBFN model.

A complete list of all 940 compounds and results of cal-
culated H for all QSPR models, i.e. CSW/MLR, DSW/
MLR, TSW/MLR, HSW/MLR GA/MLR, and GA/
RBFN models, group and bond contribution methods is
deposited as Supporting material and is available upon
request.

4. Discussion

As the behavior of air under environmental conditions is
close to that of an ideal gas, H depends primarily on inter-
actions in the aqueous phase. Therefore, H is related to DGs

(Dearden and Schüürmann, 2003):

log
H
RT
¼ DGs

2:3RT
ð4Þ

Also according to the universal solvation model (SMx),
DGs is partitioned as follows:

DGs ¼ DGENP þ GCDS ð5Þ

where DGENP is the change in the solute electronic and nu-
clear energy and solvent electronic polarization energy
(electrostatic) and GCDS is a cavitation-dispersion-solvent
structure term (non-electrostatic). Fig. 3 shows the loga-
rithm of the absolute ratio of electrostatic and non-electro-
static terms of DGs for all 940 compounds in the data-set.
In addition, the data regarding this figure are listed in the
Supporting material. Fig. 3 shows that the electrostatic
term of Eq. (5) is at least 10 times greater than the non-elec-
trostatic term for most (ca. 60%) of the compounds in the
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Fig. 2. Scatter diagrams of training (a) and external test (b) data-sets of all models.
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data-set. Therefore, it is expected that those topological
and geometrical descriptors that characterize the shape
and size of a compound make only a weak contribution
to the QSPR models of H. Tables 1–5 demonstrate this
fact; thus, there is no such descriptor contribution in
the CSW/MLR, DSW/MLR and HSW/MLR models
(although some electrostatic descriptors such as charged
partial surface area are combined shape and electronic
information), and a very weak contribution in the TSW/
MLR model, represented by 2j with lowest CO value of
�0.116 and low t-value of 8.1, and in the GA/MLR model
by 3vv

c with low CO value of �0.273 and lowest t-value of
�5.2 in the corresponding models. Both of these topologi-
cal descriptors are related to molecular complexity and
branching. In other words, for this diverse data-set of
chemicals the shape and size of the molecules are not as
important for H as electrostatic features of molecules.

Although the different descriptor sources lead to differ-
ent statistical results and performances, the selected subsets
of descriptors are almost the same in nature. The CSW/
MLR model (Table 1) has four constitutional descriptors,
i.e. number of fluorine atoms (nF), number of oxygen
atoms (nO), number of nitrogen atoms (nN), and number
of rings (nR), of which two of them (nO and nN) are most
probably connected with hydrogen bonding ability of a sol-
ute molecule with water molecules. HA_HDSA-2 and
HDCA, as electrostatic descriptors, are also related directly
to hydrogen bonding ability, and the other descriptors
encode the electrostatic features of the solute molecules
that control the long-range interaction forces of a solute
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molecule surrounded by solvent molecules. A weak contri-
bution of molecular size is implicitly involved with charged
partial surface area descriptors, i.e. DPSA-1, PPSA-3,
HDCA, and WNSA-1. The most important descriptor of
this model is HA_HDSA-2 with the highest t-value of
�19.4 and CO of �0.645.

The DSW/MLR model (Table 2) has two constitutional
descriptors, i.e. number of carboxylic groups (nCOOH) and
nN. The group count descriptor, nCOOH, represents a mole-
cule’s capability to be a hydrogen-bond acceptor and nN

indirectly represents a molecule’s capability to partici-
pate in hydrogen bonding. H-050, O-058, and H-046 are
atom-centered fragment descriptors or atom-centered
codes (ACCs). AAC describes each atom by its own atom
type and the bond types and atom types of its first neigh-
bors, and it has information regarding different functional
groups. However, ACC cannot discriminate between differ-
ent arrangements of functional groups within a molecule.
Hydrogen attached to heteroatom (H-050) as an ACC is
related to hydrogen-bond donation ability of a molecule,
the most important descriptor of this model with a high
t-value of �16.1 and highest CO of �0.563. SEigp has a
combination of information about polarizability and
branching of a molecule. The maximal electrotopological
positive variation (MAXDP) is related to the electrophilic-
ity of a molecule, and the remaining descriptors can be also
related to electronegativity, polarizability and charge distri-
bution in the molecule.

The TSW/MLR model (Table 3) has six constitutional
descriptors i.e. number of hydrogen-bond donors (nHD),
number of nitro groups ðnNO2

Þ, nF, nN, number of halogen
atoms (nh), and number of methyl groups ðnCH3

Þ. nHD

directly, and ðnNO2
Þ and nN indirectly, encode the ability

of a molecule to form hydrogen bonds with water mole-
cules. The logP descriptor is a measure of hydrophobicity
of a compound and 2j is a measure of shape and molecular
complexity and encodes information about the spatial den-
sity of atoms in a molecule. In this model, only l and
P
Estate reflect the effect of electrostatic features of solute

molecules on H. The E-state index (Estate) gives informa-
tion related to the electronic and topological state of an
atom in the molecule. In other words, it is a measure of
the electronic accessibility of the atom and can be inter-
preted as a probability of interaction with solvent (water)
molecules. However, the index cannot be considered a pure
electronic descriptor; it is, in fact, a descriptor of atom
polarity and steric accessibility. The dipole moment (l) is
a vector quantity and encodes displacement with respect
to the center of gravity of positive and negative charges
in a molecule and is important in modeling solvation prop-
erties of compounds that depend on solute–solvent interac-
tion. The most important descriptor of this model is nHD

with t-value of �25.4 and CO of �0.600.
The HSW/MLR model (Table 4) has four constitutional

descriptors, i.e. nNO2
, nF, number of six-membered rings

(nR6), and number of hydroxyl groups (nOH). nNO2
most

probably represents hydrogen-bond acceptor ability and
nOH reflects molecular capability for hydrogen-bond accep-
tance or donation. Two thermodynamically derived
descriptors from the HYBOT software, namely

P
CadðoÞ

and Max(Ca(o)), demonstrate marked influences on the per-
formance of the QSPR model (Table 6). Ca(o) and Cd(o) are
the hydrogen-bond acceptor and donor factor values
respectively stemming from octanol–water partition coeffi-
cient, and

P
CadðoÞ is the sum of absolute Ca(o) and Cd(o)

values for all hydrogen-bond donor and acceptor atoms
in a molecule. Furthermore, HA_HDSA-2 is an electro-
static descriptor that is directly related to hydrogen-bond
acceptor capability of a molecule. Electrostatic intermolec-
ular forces between solute and solvent molecules in this
model are characterized by the remaining descriptors of
Table 4, i.e. GATS1e, PNSA-1, and RPCG. The most
important descriptor of this model is

P
CadðoÞ with t-value

of �29.2 and CO of �0.816.
The GA/MLR (Table 5) model is developed based on the

GA descriptor selection method and from the same set of
descriptors which is used in developing the HSW/MLR
model. Just three descriptors are different from those which
have been achieved in the HSW/MLR model, i.e. Morigu-
chi octanol–water partition coefficient (MLOGP), hydro-
gen-acceptors dependent hydrogen bonding donor ability
of the molecule (HA_HDCA-1), and 3rd order valence clus-
ter molecular connectivity ð3vv

cÞ. Again,
P

CadðoÞ is the most
important descriptor of the model, where its chance of
survival in all generations of the GA is more than other
descriptors and its t-value and CO are �25.7 and �0.816,
respectively. More information about all the above-
mentioned descriptors can be found in the literature (Todes-
chini and Consonni, 2000).

Due to the diversity of chemicals in the data-set, the
presence of constitutional descriptors in all QSPR models
was expected; however, some of them are strongly related
to the hydrogen bonding ability of the compounds. This
means that a QSPR model needs to model some groups
of compounds in the data-set by means of specific atomic
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or group indicators, and to shift the model prediction val-
ues accordingly, as their partitioning between water and air
might be accomplished in entirely different ways from the
others. Inclusion of hydrogen bonding descriptors in all
QSPR models with high COs and t-values reveals that
hydrogen bonding is the most important molecular feature
of solvent–solute interaction in governing H of organic
compounds in the air–water system. These results are com-
pletely consistent with the nature of water molecules as sol-
vent, since they are very good hydrogen-bond acceptors
and donors. Although some electrostatic descriptors
appeared in all models, their importance and influence were
not so great as those of hydrogen bonding.

According to Table 6, the three models of CSW/MLR,
DCSW/MLR, and TSW/MLR, which are based on indi-
vidual descriptor generator packages, i.e. CODESSA, Dra-
gon, and Tsar, have no significant advantage over each
other. In contrast, the HSW/MLR model based on the
combined descriptors of all three packages, together with
a very limited set of descriptors from the HYBOT package,
has satisfactory statistical results and prediction ability.
Statistical results from the GA/MLR are not very different
from those of the HSW/MLR model, but the former is
more generalized. Furthermore, applying the RBFN
approach for modeling of H from the selected descriptor
set from GA (GA/RBFN model) has improved the predic-
tion ability of the model. Twelve (from 30) hidden units
were found to be optimal for the GA/RBFN model.
Although a greater number of hidden units decreased the
RMSE of the model, it led to an over-fitted model. It
should be mentioned that the cross-validation of the GA/
RBFN model was carried out on 110 data points and the
cross-validation of the other models was performed using
the leave-one-out method. Therefore, the RMSEs of
cross-validations should not lead to the deduction that
the RMSE of GA/RBFN is larger than GA/MLR model.
In fact, the RMSE of the GA/RBFN model for all the
external data-set (170 data) is 0.567, lower than the RMSE
of the GA/MLR model.

The results in Table 6 emphasize the importance of
using the same data-set for comparison of models. For
example, Lin and Sandler (2002), using a data-set of 395
compounds, obtained a RMSE of 0.34 for their logH

model. However, they reported that the Meylan and How-
ard (2000) methods yielded, for the same compounds,
RMSEs of 0.52 (group method) and 0.43 (bond method).
The differences found are not as large as those found
between our GA/RBFN model and those of Meylan and
Howard (2000) for our 940-compound data-set.

The behavior of H in any linear QSPR model can be
explained with the sign of the descriptor coefficients. How-
ever, the signs of descriptor coefficient, t-value and CO
should be the same to guarantee the integrity of judgment
about H variation against the specific descriptor. For
instance, the same minus signs of coefficients, t-values,
and COs for hydrogen-bond related descriptors in all linear
models confirms that increasing the hydrogen-bond ability
of an organic compound in water causes a decrease in H or
in other words, an increase in its solubility in water.

In conclusion, the five linear QSPR models of H show
that hydrogen bonding, as a short-range intermolecular
force, plays the main role in governing partitioning of an
organic compound between air and water. Electrostatic
intermolecular forces, as long-range forces, also have an
important effect on H, whereas there is a much weaker cor-
relation between H of a compound and the shape, size, and
complexity of the molecular structure of compounds. The
QSPR models of GA/MLR and GA/RBFN are based
solely on calculated information from the molecular struc-
tures of the compounds and have better performances than
the bond and group contribution methods. RBFN as a sim-
ple nonlinear modeling approach has improved the accu-
racy of the linear QSPR model, whereas establishing a
MLPs neural network up to two hidden layers and up to
50 neurons in each layer was unsuccessful and led to
over-fitted models.

Finally, for another comparison base, AAEs% are calcu-
lated for the developed models which are 30%, 33%, 37%,
16%, 14% and 14% for CSW/MLR, DSW/MLR, TSW/
MLR, HSW/MLR, GA/MLR and GA/RBFN models,
respectively.
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Dearden, J.C., Schüürmann, G., 2003. Quantitative structure–property
relationships for predicting Henry’s law constant from molecular
structure. Environ. Toxicol. Chem. 22, 1755–1770.

Dearden, J.C., Cronin, M.T.D., Sharra, J.A., Higgins, C., Boxall, A.B.A.,
Watts, C.D., 1997. The prediction of Henry’s law constant: a QSPR
from fundamental considerations. In: Chen, F., Schüürmann, G.
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